10 research outputs found

    Spektral Eigenschaften stark korrelierter Elektronensysteme

    No full text
    We investigate the single particle static and dynamic properties at zero temperature within the Hubbard an three-band-Hubbard model for the superconducting copper oxides. Based on the recently proposed self-energy functional approach (SFA) [M.Potthoff, Eur. Phys. J. B 32 429 (2003)], we present an extension of the cluster-perturbation theory (CPT) to systems with spontaneous broken symmetry. Our method accounts for both short-range correlations and long-range order. Short-range correlations are accurately taken into account via the exact diagonalization of finite clusters. Long-range order is described by variational optimization of a ficticious symmetry-breaking field. In comparison with related cluster methods, our approach is more flexible and, for a given cluster size, less demanding numerically, especially at zero temperature. An application of the method to the antiferromagnetic phase of the Hubbard model at half-filling shows good agreement with results from quantum Monte-Carlo calculations. We demonstrate that the variational extension of the cluster-perturbation theory is crucial to reproduce salient features of the single-particle spectrum of the insulating cuprates. Comparison of the dispersion of the low-energy excitations with recent experimental results of angular resolved photoemission spectroscopy (ARPES) allows us to fix a consistent parameter set for the one-band Hubbard model with an additional hopping parameter t' along the lattice diagonal. The doping dependence of the single-particle excitations is studied within the t-t-U Hubbard model with special emphasis on the electron doped compounds. We show, that the ARPES results on the band structure and the Fermi surface of Nd{2-x}Ce_xCuOCl_{4-\delta} are naturally obtained within the t-t-U Hubbard model without further need for readjustment or fitting of parameters, as proposed in recent theoretical considerations. We present a theory for the photon energy and polarization dependence of ARPES intensities from the CuO2 plane in the framework of strong correlation models. The importance of surface states for the observed experimental facts is considered. We show that for electric field vector in the CuO_2 plane the ā€˜radiation characteristicsā€™ of the O 2p_{\sigma} and Cu 3d_{x^2-y^2} orbitals are strongly peaked along the CuO_2 plane, i.e. most photoelectrons are emitted at grazing angles. This suggests that surface states play an important role in the observed ARPES spectra, consistent with recent data from Sr_2CuCl_2O_2. We show that a combination of surface state dispersion and Fano resonance between surface state and the continuum of LEED-states may produce a precipitous drop in the observed photoelectron current as a function of in-plane momentum, which may well mimic a Fermi-surface crossing. This effect may explain the simultaneous ā€˜observationā€™ of a hole-like and an electron-like Fermi surfaces in Bi_2Sr_2CaCu_2O_{8+\delta} at different photon energies.Statische und dynamische Eigenschaften des Einband- und Dreiband-Hubbard-Modelles fĆ¼r die supraleitenden Kuprate werden untersucht. Basierend auf dem kĆ¼rzlich vorgschlagenen "Self-energy Functional Approach" (SFA) [M.Potthoff, Eur. Phys. J. B 32 429 (2003)] wird eine Erweiterung der "Cluster-Perturbation Theory" (CPT) fĆ¼r Systeme mit spontant gebrochener Symmetrie vorgeschlagen, die auf aktuelle Probleme stark korrelierter Elektronensysteme, im besonderen der Hochtemperatur-Supraleiter, angewandt wird

    Optimizing HPC applications with Intel cluster tools

    No full text
    Optimizing HPC Applications with IntelĀ® Cluster Tools takes the reader on a tour of the fast-growing area of high performance computing and the optimization of hybrid programs. These programs typically combine distributed memory and shared memory programming models and use the Message Passing Interface (MPI) and OpenMP for multi-threading to achieve the ultimate goal of high performance at low power consumption on enterprise-class workstations and compute clusters.The book focuses on optimization for clusters consisting of the IntelĀ® Xeon processor, but the optimization methodologies also apply to the IntelĀ® Xeon Phiā„¢ coprocessor and heterogeneous clusters mixing both architectures. Besides the tutorial and reference content, the authors address and refute many myths and misconceptions surrounding the topic. The text is augmented and enriched by descriptions of real-life situations

    Optimizing HPC Applications with Intel Cluster Tools

    Get PDF
    Computer scienc

    Optimizing HPC Applications with Intel Cluster Tools

    Get PDF
    Computer scienc
    corecore